
A Multi-Dimensional Progressive Perfect Hashing for High-
Speed String Matching

Yang Xu, Lei Ma, Zhaobo Liu, H. Jonathan Chao

ECE Department, Polytechnic Institute of NYU
Brooklyn, NY 11201

yangxu@poly.edu, {lma01, zliu01}@students.poly.edu, chao@poly.edu

ABSTRACT
Aho-Corasick (AC) automaton is widely used for multi-string
matching in today’s Network Intrusion Detection System (NIDS).
With fast-growing rule sets, implementing AC automaton with a
small memory without sacrificing its performance has remained
challenging in NIDS design. In this paper, we propose a multi-
dimensional progressive perfect hashing algorithm named P2-
Hashing, which allows transitions of an AC automaton to be
placed in a compact hash table without any collision. P2-Hashing
is based on the observation that a hash key of each transition
consists of two dimensions, namely a source state ID and an input
character. When placing a transition in a hash table and causing a
collision, we can change the value of a dimension of the hash key
to rehash the transition to a new location of the hash table. For a
given AC automaton, P2-Hashing first divides all the transitions
into many small sets based on the two-dimensional values of the
hash keys, and then places the sets of transitions progressively
into the hash table until all are placed. Hash collisions that
occurred during the insertion of a transition will only affect the
transitions in the same set. The proposed P2-Hashing has many
unique properties, including fast hash index generation and zero
memory overhead, which are very suitable for the AC automaton
operation. The feasibility and performance of P2-Hashing are
investigated through simulations on the full Snort (6.4k rules) and
ClamAV (54k rules) rule sets, each of which is first converted to a
single AC automaton. Simulation results show that P2-Hashing
can successfully construct the perfect hash table even when the
load factor of the hash table is as high as 0.91.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General Security
and protection (e.g., firewalls); C.2.6 [Internetworking]: Routers

General Terms
Algorithms, Design, Security

Keywords
Aho-Corasick Automaton; Perfect Hash Table; Hash Collision;
Multi-string Matching

1. INTRODUCTION
Network Intrusion Detection System (NIDS) has been widely
deployed in today’s Internet to safeguard the security of network
operations. Among the many network-based intrusion detection
techniques [2][3][10][11], multi-string matching is commonly
used because of its precision and accuracy in attack detection.

Many multi-string matching schemes have been proposed in the
past [4][5][6][7][8][9], most of which derive from the classic

Aho-Corasick (AC) automaton [1] as its worst case performance
is deterministic, linear to the length of the input stream and
independent of the rule set size. Therefore it is impossible for an
attacker to construct a worst-case traffic that can slow down the
NIDS and let malicious traffic escape the inspection. In fact, many
popular NIDS and anti-virus systems, such as Snort [12] and
ClamAV [13], already implemented AC automaton as their multi-
string matching engines. With fast-growing rule sets,
implementing AC automaton with a small memory without
sacrificing performance becomes a major challenge in NIDS
design.

There are many schemes that could be used to efficiently
implement dense automatons1. We can use a two-dimensional
direct-indexed table to store all the transitions, where each row
corresponds to a state, and each column corresponds to a symbol.
The intersection between each row and each column stores the
row ID of the next hop state. In order to reduce memory cost,
HEXA [24] was proposed to reduce the number of bits stored in
each field of the two-dimensional table using the historical
scanning information carried by the input stream. Although a two-
dimensional table works fine for the dense automaton, it is not a
good solution to implement the sparse automaton (such as AC
automaton, which has the transition-to-state ratio normally
between 1 and 2), because of the memory waste by the non-
existing transitions. Besides the two-dimensional table, another
way of implementing the automaton is to store each state as a
whole data structure, and connect parent and child states by
pointers in the parent states. However, the wide distribution of
state sizes (i.e., the numbers of transitions of states) on the AC
automaton makes the design of a compact state structure a very
difficult task.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

1

10

100

1000

10000

100000

Th
e

N
um

be
r o

f S
ta

te
s

State Size
Figure 1. The state size distribution of AC automaton based

on the Snort rule set (only shows states with size <= 30)

1 An automaton is called dense automaton if the ratio of its total

transition number to its total state number is close to 256.

2011 Seventh ACM/IEEE Symposium on Architectures for Networking and Communications Systems

978-0-7695-4521-9/11 $26.00 © 2011 IEEE

DOI 10.1109/ANCS.2011.33

167

Figure 1 shows the distribution of state sizes on the AC automaton
based on the Snort rule set. We can see that the distribution is
quite wide and unbalanced, and it is very hard to design a compact
state structure storing pointers pointing to the child states.

Hash table is a good solution to implement the sparse automaton
such as AC automaton, because we no longer need to store the
non-existing transitions or keep the complicated state structure.
Compared to other AC automaton implementation schemes, such
as bitmap-compression AC and path-compression AC [9], storing
transitions directly in a hash table can avoid unnecessary memory
waste, and simplify the process of making a transition decision.
The main problem involved in hash table design is the hash
collision, which might increase the memory access times for each
transition decision and cause instability of the processing speed.
Furthermore, hash collision might be exploited by attackers to
degrade system performance. In [8], Lunteren proposes a BFSM-
based pattern-matching (BFPM), which uses a hash table
construction scheme named Balanced Routing Table (BART) [14]
to limit the maximum number of collisions of any hash index by a
configurable bound � (�=4 is used in [8]). When a transition
decision is made, � transitions are read out from the same entry of
the hash table simultaneously. After � parallel comparisons, the
correct transition can be decided. Storing multiple transitions in
each entry, however, increases the memory bus width and causes
unnecessary waste of memory space. Furthermore, � comparisons
required for each transition decrease the scheme’s efficiency in
software implementation.

Therefore, an efficient perfect hashing scheme for AC automaton
is desirable in high-performance NIDS design. Although there are
many perfect hashing and alternative algorithms available in
literature, most of them require multiple memory accesses to
generate the hash index (traversing a tree structure) [15][25], or
need more than one memory access in the worst case to get the
correct hash index for a hash table lookup [16][17][18]. Due to the
dependency between two contiguous transitions made on the
automaton, one hash query can start only after the previous hash
query returns a new current state ID (without the new current state
information, the next transition cannot be made). In other words,
hash queries have to be performed in serial. The time required to
perform one hash query is equal to the sum of the time generating
the hash index and the time accessing the hash table. If the hash
unit takes too much time generating the hash index or accessing
the hash table, the matching speed of the system will be degraded.

Our main contributions in this paper are summarized as follows.

1. We propose a multi-dimensional progressive perfect hashing
algorithm, named P2-Hashing, that allows transitions of an
AC automaton to be placed in a compact hash table without
any collision. P2-Hashing supports both un-optimized and
optimized AC automatons.

2. Different from many existing perfect hashing schemes which
require additional storage for their own representations, P2-
Hashing requires no storage overhead to implement the
perfect hashing function (except for the small fixed 256-entry
character translation table). This is achieved by embedding
information directly into the AC automaton structure.

3. P2-Hashing requires no memory access to generate the hash
index (a character translation table needs to be accessed one
time slot before the generation of the hash index, but it is not
on the critical path of the AC automaton operation and
therefore can be implemented by a separate pipeline stage).

This property is important to AC automaton operation
because only one hash query can be performed on the fly due
to dependency between two contiguous transitions made on
the automaton. A fast hash index generation can speed up the
automaton operation.

4. A unified perfect hashing solution has been presented to
implement all search tables in the AC automaton
implementation, which include transition table and rule ID
table. An important advantage of this unified perfect hashing
solution is that it avoids pointers which are normally required
to connect different tables, so that the memory cost is
minimized.

The rest of the paper is organized as follows. Section 2 provides
the background of the paper, and reviews the related work.
Section 3 gives the problem statement and terms to be used.
Section 4 proposes two perfect hash table construction algorithms,
including P2-Hashing and its two-dimensional version. In Section
5, we give the system design of the proposed multi-string
matching engine, based on which, in Section 6 we introduce how
to construct perfect hash table for rules. Section 7 presents the
simulation results. Section 8 discusses an incremental update
scheme on the proposed perfect hash table. Finally, Section 9
concludes the paper.

2. BACKGROUND AND RELATED WORK
2.1 Aho-Corasick Automaton
Aho-Corasick (AC) automaton [1] is one of the most used
algorithms in multi-string matching. It is well-known for its
deterministic matching throughput, and therefore is not vulnerable
to attack traffic. Given a set of string patterns (also called rules in
this paper), the construction of an AC automaton consists of two
steps. In the first step, a trie structure is created based on the
strings. Each state/node on the trie corresponds to a valid prefix of
strings. The edges on the trie are called the goto transitions of the
AC automaton. In the second step, failure transitions are added
from each state � to a state � if the prefix represented by state � is
the longest suffix of the prefix represented by state �. Consider a
set of string patterns {hers, he, his, him, me, she}. Its AC
automaton is shown in Figure 2, in which the solid arrows
represent the goto transitions, while the dotted arrows represent
the failure transitions.

Figure 2. AC automaton for rule set {hers, he, his, him, me,

she}. For simplicity, failure transitions to the root state are not
shown.

168

Given a active state � and an input character �, the AC automaton
will first check if there is a goto transition from state � labeled
with �. If such a goto transition exists, the state pointed by the
goto transition will be the active state in the next time slot;
otherwise, the active state in the next time slot will be the state
pointed by the failure transition of state � and then input character
� will be examined again in the next time slot.

Actually, AC automaton has two versions. The one we just
introduced is the un-optimized version. The advantage of the un-
optimized version is that an AC automaton with � states has only
� � � goto transitions and � � � failure transitions; therefore, the
storage complexity of transitions is relatively low. For an input
stream with length 	, the number of state transitions to be made
during matching in the worst cast is
	.

The optimized version of AC automaton is actually a
Deterministic Finite Automaton (DFA). Based on the un-
optimized version, the optimized version of AC automaton could
be constructed by adding goto transitions for every character from
every state and removing the failure transitions. Compared to the
un-optimized version, the optimized version only needs to make
one state transition for each input character. Therefore its worst-
case throughput is twice the throughput of the un-optimized
version. The main disadvantage of the optimized version is its
huge memory cost, since each state has 256 goto transitions
corresponding to 256 characters.

In the remainder of this paper, unless specifically noted, we use
AC automaton to denote its un-optimized version, and use AC-
DFA to denote the optimized version. For the sake of simplicity,
we use the word “transition” to refer the goto transition if there is
no confusion in the context.

2.2 Memory Optimization of Aho-Corasick
Automaton
Many solutions aiming to reduce the memory cost of AC
automaton and AC-DFA have been proposed in literature
[8][9][19][20]. Tuck et al. [9] apply bitmap compression and path
compression on AC automaton to save the memory cost of non-
existing transitions. Tan et al. [20] propose an approach to bit-split
the AC-DFA into several small AC-DFAs to reduce the total
memory requirement. Song et al. [19] and Lunteren [8] observed
that a large fraction of transitions on AC-DFA are backward to
states at the first three levels (the root state is at level 1). Based on
this observation, Lunteren proposes to remove transitions
backward to the first two levels by storing them in a separate 256-
entry table; while Song [19] proposes a Cached Deterministic
Finite Automate (CDFA) model, based on which backward
transitions to states at level 3 can also be removed. The main idea
of CDFA is to maintain more than one active state in AC-DFA
(one at the root state, one at states at level 2, and one at states at
other levels). It has been shown that after the elimination of
backward transitions to states at the first three levels, the number
of transitions of AC-DFA is approximately equal to the number of
transitions of AC automaton. Furthermore, it is observed that the
total number of transitions could be significantly reduced if the
rule set is partitioned into multiple subsets, and implemented by
multiple small AC-DFAs [8][19].

Besides the memory optimization, much research work focuses on
accelerating the processing speed of AC automaton/AC-DFA
[5][6][7].

2.3 Other Multi-string Matching Schemes
Yu et al. [26] proposed a gigabit rate multi-string matching
scheme based on TCAM. Piyachon and Luo [27] proposed a
sophisticated memory model for multi-string matching
implementation based on Network Processors (NPs).

In addition, there are also many FPGA-based schemes proposed
for multi-string matching [21][22][23], which map the rule set
directly to the pure logic of FPGA, and can achieve desirable
high performance. A main limitation of FPGA-based schemes is
that when rules are changed, it takes considerable time to re-
synthesize the design and reprogram the FPGA.

3. PROBLEM STATEMENT
In this section, we define the terms to be used in this paper, and
give the problem statement.

An AC automaton is formally defined as a 5-tuple ��
��� �� �� �� �� , which consists of

• A finite set of states, �, where each state is represented by
a number ranging from 0 to ��� � �, among which 0 is
the start (root) state;

• A finite input character set, �, called alphabet;
• A set of accepting states, � � �;
• A goto transition function that, ��� � � � ��������;
• A failure function that, �� � � � � � �.

A hash table is a 3-tuple ! � �"� #� $�, consisting of

• A set of keys, ", where each key is used as the input of
the hash function to obtain the index of the hash table;

• A table S, which has at least �"� entries, i.e., �$� % �"�;
• A hash function that, #� " � � , where � is the set of

natural numbers from 0 to �$� � �; the hash function is
called a perfect hash function if for &�� ' ("�and��) '�
we have �#��) #'� . In this paper, we call #�� the
hash index of key �.

A hash table is called a perfect hash table if the hash function
associated with the hash table is a perfect hash function. The load
factor of a hash table is defined as * � �"�+�$�, which describes
how full the hash table is. Normally, a larger * implies a high
probability of hash collisions.

We assume that the hash function used in our hash table
construction is randomly selected from a universal hash function
family and is uniform hashing, i.e., each hash key is equally likely
to hash into any of the �$� entries of the hash table, independently
of where any other key has hashed to.

Our main objective in this paper is to store all the transitions of
AC automaton in a perfect hash table. Each transition on the AC
automaton takes one entry of the hash table in the form of
“(source state ID, input character) , destined state ID”, where
“(source state ID, input character)” stands for the concatenation of
“source state ID” and “input character” in binary mode, and works
as the key of the hash function, while “destined state ID” is the
result we hope to get from the hash table access.

Besides the AC automaton, we hope the proposed perfect hashing
algorithm could also be used for AC-DFA. Considering the huge
memory cost of AC-DFA, we use the scheme proposed in [19] to
eliminate the backward transitions to states at the first several
levels, and store only the remaining transitions in the perfect hash
table. Actually, AC-DFA could be viewed as a special case of AC
automaton, i.e., AC automaton without failure transition.

169

Therefore, we present the perfect hash table construction
algorithm based on the general case: AC automaton.

4. PERFECT HASH TABLE
CONSTRUCTION ALGORITHM
4.1 Progressive Perfect Hashing Algorithm
We first present two important observations that will be used in
our perfect hash table construction algorithm.

(1) The first is about the hash function. If a hash collision occurs
when we try to place a new key into the hash table, the collision
might be avoided if we could change the value of the key. This
observation is based on the fact that the hash index of a key
depends only on the hash function and the value of the key. If the
value of the key is changed, the hash index is also changed and,
accordingly, the original hash collision may be avoided.

(2) The second observation is that the ID of each state of AC
automaton could be named as any values, as long as there are no
two states being named with the value.

Based on these two observations, we designed a scheme called
Progressive Perfect Hash (P2-Hashing) to place the transitions of
AC automaton in a hash table without collision. To better
illustrate our scheme, in this section, we only consider storing
goto transitions. In Section 6, we discuss the situation of storing
goto transitions, failure transitions, and rule IDs.

The main idea of P2-Hashing is to divide the goto transitions of a
given AC automaton into multiple independent sets according to
their source states, and place these transition sets in the hash table
in decreasing order of their sizes. The transitions of each set are
placed into the hash table as a whole. Any hash collision
occurring during the placement of a set causes the set placement
failure, and the already-placed transitions in this set are removed
from the hash table. Then the source state shared by transitions in
this set is renamed, and another set placement trial is performed.
The renaming operation repeats until a successful set placement is
achieved, and then the placement of the next transition set starts.

Consider the AC automaton shown in Figure 2, which has 12
transitions. The transition sets associated with source states are
shown in Table I. Suppose we want to store these transitions into
a perfect hash table with 12 entries. With P2-Hashing, we first
place the set associated with state 0, since it has the most
transitions. It is easily seen that the success probability that all
three transitions in this set are placed into the hash table without
collision is -.

-.
/ --
-.
/ -0
-.

. Suppose the set associated with state 4 is

the last set to be placed. Its success probability is -
-.

.

Table I. Transition Sets of Source States
12324� 12324�� 12324�5 12324�
 12324�6 12324�� 12324�7 12324�8
9 �:;�� 9��4;�
 95�<;�= 9
�>;�6 96�<;�? 9� �4;��� 97�:;�8 98�4;�@
9 �A;�� 9��B;�5 95�A;��

9 �<;�7

It should be noted that the sequence of set placements has a great
impact on their success probabilities. Consider the above example
again, if we place the set associated with state 0 last, the success
probability of the set placement is only C

-.
/ .
-.
/ -
-.

� D 78. The
reason for this low success probability is that we must place all
transitions of each set into the hash table without collision
simultaneously. If we place the largest set last when the hash table
is almost full, the success probability would become very low.

That is why P2-Hashing places larger transition sets into the hash
table first.

Formally, the success probability of a set placement is determined
by the current load factor of the hash table *� and the number of
transitions in the set E�� and could be approximately calculated
with the following inequality.

��F��G���H�����GI�J���GKGLI� M � � *�N (1)

The success probability of a set placement determines the average
number of state renamings required before a successful set
placement. Suppose * � D@, E � � , the success probability is
less than �+�
8 , which means that, on average, we need to
rename the state 1024 times before achieving a successful set
placement. Accordingly, the number of bits to encode the state
IDs is expected to be 10. If E increases to 20, we need to rename
the state 1 million times on average before achieving a successful
set placement, and the number of bits used to represent state IDs
increases to 20.

Apparently, if both E� and * happen to be large during the
placement of a transition set, the performance of the P2-Hashing
algorithm would become very poor, not only because of the long
running time of state renamings (during each state renaming,
many transitions may need to be re-placed), but also the high
storage cost required by the long state IDs. Fortunately, AC
automatons are normally sparse automatons, especially for large
rule sets. As shown in Figure 1, only a few of states have
relatively large number of goto transitions (say more than 10 goto
transitions), and 99% of states have only three or fewer transitions.
By placing large sets first we can avoid the situation that
both�E�and * are large.

4.2 Two-Dimensional P2-Hashing Algorithm
A main limitation of the P2-Hashing algorithm is that it cannot
handle very well the situation in which a few states take the
majority of the total transitions (especially for small rule sets).
Consider the AC automaton shown in Figure 3, which includes 23
rules with the same length. All of these rules have the same prefix
of “abc.” Suppose we want to use P2-Hashing to place the 26
transitions of the AC automaton into a hash table with 28 entries.
According to P2-Hashing, we first place the transition set
associated with state “3”, since it is the largest transition set with
23 transitions.

It is easily seen that the success probability of this set placement is
O .PQR

.P
S..

RT0 �D7 � � QU . That means, on average, we have to
rename state “3” by � U times to achieve a successful set
placement, and use 20 bits to name each state. Please note that
ideally, 27 states of the AC automaton only require 5 bits for
unique representation.

Figure 3. AC automaton for a set of rules with the same prefix.

For simplicity, failure transitions are not shown (here all to
the root state).

170

The P2-Hashing algorithm introduced above changes the hash
indexes of transitions by renaming their source states. In fact, the
input key of the hash function consists of two dimensions: source
state ID and input character. We can achieve the target of
changing hash indexes by changing the value of either dimension.
When the values of characters are changed, we only need a 256-
entry character translation table to record the new encoding of
each character.

Now we need to decide the sequence in which transitions should
be placed into the hash table, and the dimensions of transitions
that should be renamed when hash collisions occur during the
placements. The main challenge involved in this process is that
when a state or character is renamed, many transitions could be
affected, including those already-placed transitions. How can we
avoid the fluctuation of the hash table, i.e., transitions keep being
placed in and removed from the hash table? Aiming to resolve this
problem, we present a two-dimensional P2-Hashing (2D P2-
Hashing for short) algorithm, which consists of three steps.

(1) In the first step, we model the AC automaton V� �
��� �� �� �� �� as a bipartite graph, which is formally defined as a
3-tuple W � X� Y� Z�, consisting of

• A set of nodes, X;
• A set of nodes, Y;
• A set of edges, Z; &[F� \](Z satisfies that F (X� \ (

Y.

In this model, we set X � �, Y � ^, and let Z � �[_� �] �&_ (
�� &� (^� 2:32��_� ��) �����. In other words, each state in AC
automaton corresponds to a node in set X, each character in AC
automaton corresponds to a node in set Y, and each transition in
AC automaton corresponds to an edge in set Z. To better illustrate
the scheme, we name nodes in set X state nodes, and nodes in set
Y character nodes. It is easy to see that storing transitions of the
AC automaton in a perfect hash table is equivalent to storing
edges of the bipartite graph in the perfect hash table, where the
concatenation of F and \ of each edge [F� \] is used as the key
of the hash function.

Consider the AC automaton in Figure 2 as an example. Its
bipartite graph model is shown in Figure 4, in which state node set
X includes 13 nodes � `�
�, and character node set Y includes 6
nodes �#� G� a� �� �� K�. Each edge in the bipartite graph represents
a transition on the AC automaton.

On the bipartite graph, the number of edges connected to each
node reflects the impact of the node during the perfect hash table
construction. The more edges a node has, the more difficult to
rename it to achieve a collision-free placement of all its connected
edges.

Figure 4. The bipartite graph model of the AC automaton in

Figure 2.

Algorithm 1. Bipartite Graph Decomposition
Input:

Bipartite graph W � X� Y� Z�;

Output:

A sequence number �\� for every node \ (X b Y;
A dependent edge set c\� for every node \ (X b Y;

Algorithm:
�\� d� �X		�&�\ (X b Y�;
c\� d� �X		�&�\ (X b Y�;
for e d� �; e M �X� f �Y�; e f f� ;
{

Among all nodes in bipartite graph W, choose a node, say \,
that has the least connected edges; if there are multiple
qualified nodes, randomly select one;
�\� d� e;
c\� d�the set of edges connected to node \;
Remove node \ and its connected edges from the bipartite
graph W;

}

(2) In the second step, we decompose edges of the bipartite graph
into �X� f �Y� sorted edge sets (some sets could be empty), and
associate each edge set with a node in X b Y. We call each edge
set the dependent edge set of its associated node. The bipartite
graph decomposition algorithm is shown in Alg. 1.

The bipartite graph decomposition consists of �X� f �Y�� phases,
and starts with all nodes unassociated. During each phase, among
all nodes in the bipartite graph, we choose a node, say \, that has
the fewest connected edges (if there are multiple qualified nodes,
we choose an arbitrary one). We allocate all edges connected to
node \ to node \’s dependent edge set, and remove node \ and its
connected edges from the bipartite graph.

After the bipartite graph decomposition, each node is assigned a
dependent edge set and a sequence number. For the bipartite
graph in Figure 4, the dependent edge sets of nodes and the
sequence in which they are removed from the bipartite graph are
shown in TABLE II.

TABLE II. Dependent Edge Sets of Nodes After The Bipartite
Graph Decomposition (based on the bipartite graph in Figure

4)
Seq 1 2 3 4 5 6 7 8 9 10

Node 11 9 7 5 12 3 h 2 r 4
<3,h> <0,h> <2,r> <4,e>

Seq 11 12 13 14 15 16 17 18 19

Node 10 e 1 i 8 0 s 6 m
<10,e> <1,e> <1,i> <8,s> <0,s> <6,s> <6,m>

<0,m>

Dependent
edge set

Dependent
edge set

The complexity of the bipartite graph decomposition is linear to
the number of edges on the bipartite graph, although we need to
select a node with the fewest connected edges in each phase. This
is due to the following properties of the AC automaton:

� The total number of character nodes is at most 256;

� Although there are many state nodes, the number of edges
connected to each state node ranges only from 0 to 256;

171

� Each time when a node is removed from the bipartite graph,
the numbers of edges of its connected nodes are decreases
by only one.

According to these prosperities, we can maintain a sorted list for
character nodes and 257 linked lists for state nodes with different
numbers of connected edges. Based on the 258 lists, the operation
required in each phase is proportional to the number of edges
removed in the phase.

(3) In the third step, edge sets obtained in the second step are
placed into the hash table in reverse order of their removals from
the bipartite graph. In other words, the edge set removed from the
bipartite graph last is the first placed into the hash table. The
perfect hash table construction algorithm is shown in Alg. 2.

Algorithm 2 starts with all nodes of the bipartite graph un-named.
Names are assigned to these nodes in the decreasing order of their
sequence numbers. Each time we name a node, we place edges of
its dependent edge set into the hash table. If hash collision occurs
during the placement, we rename the node and re-place all of its
dependent edges. This process repeats until all edges in its
dependent edge set are successfully placed into the hash table
simultaneously. Then we say the name of this node is settled.

Consider the dependent edge sets in TABLE II. Character node K
is the first to be assigned a name because it has the largest
sequence number. Since node K has no dependent edge, any
name for node K is acceptable. After that, state node 5 is named,
and its dependent edge [5�K] is placed into the hash table.
Please note that the other endpoint of edge [5�K] (which is K)
has already been named. The next node to be named is �, which
has one dependent edge [5� �]. Please also note that the other
endpoint of edge [5� �] (which is 6) is already named. When a
hash collision occurs during the placement of edge [5� �], only
node “�” is renamed, while the ID of node “5” will never be
changed. This is because some other edges connected to node “5”
(the dependent edge set of node “6”) are already placed in the
hash table. If node “5” was renamed, all these edges would be re-
placed again, which might cause further hash collisions. The
above process repeats until every node has been named. After this
procedure, all edges are placed in the hash table without collision.

2D P2-Hashing may fail when all names in the name space have
been tried before a collision-free placement of a node’s dependent
edge set could be found. Two measures could be employed to
avoid the failure: (1) increase the name spaces of state nodes and
character nodes; (2) reduce the load factor of the hash table.
However, both measures would increase the memory cost of the
perfect hash table.

The 2D P2-Hashing algorithm has several characteristics, which
are summarized as follows.

(1) By breaking edges of the bipartite graph into small
independent sets, the impact of hash collision during the
placement of an edge is limited to a relatively small range.
Consider the AC automaton in Figure 3; after step 2 of the
2D P2-Hashing, transitions of the AC automaton (i.e., edges
of the biparitite graph) will be divided to 26 independent
single-transition sets. In step 3 of the 2D P2-Hashing, these
26 single-transition sets will be placed into the perfect hash
table seperately. The failure of the placement of a transition
set only affects one transition (resulting in a replacement of
the single transition). As a result, the success probabilities of
set placements are significantly increased.

Algorithm 2. Perfect Hash Table Construction
Input:

A sequence number �\� for every node \ (X b Y;
A dependent edge set c\� for every node \ (X b Y;
Name space �$ghihj and �$klimikhjm // contain available IDs
for state nodes and character nodes, respectively.

Output:
A perfect hash table n;
A Character Translation Table opp, indexed by the ASCII
codes of characters;

Algorithm:
Set n, opp, and 1pp empty;
Sort nodes in �X b Y in decreasing order of their sequence
numbers;
for every node �F in the sorted set �X b Y do
//Without loss of generality, suppose F is a state node (the
following code should be changed accordingly if F is a
character node);
{

(1) Among all available IDs in �$ghihj, randomly choose an ID,
say ���, which hasn’t been tried by node F; if all IDs in
�$ghihj have already been tried by node F, an error is
returned;
Name node F as ��� and place all edges of cF� into hash
table n; //for every edge [F� \] in cF�, it’s guaranteed
that \ has already been named;
if no hash collision occurs during the placement of cF�

remove ��� from �$ghihj;
 else

goto (1);
}

(2) With the 2D P2-Hashing, once the name of a node is settled,
it will never be changed again. This way, we can avoid the
fluctuation of the hash table.

(3) When an edge set is about to be placed into the hash table,
every edge in the set has one settled end node and one
unsettled end node (which is a common node shared by all
edges in the set). When hash collisions occur during the set
placement, only the common unsettled node needs to be
renamed. Consider the edge set dependent on node “ ” in
TABLE II; it has two edges, which are [� �] , and
[5�K], respectively. When this edge set is about to be
placed in the hash table, node “�” and “m” are already settled.
If any collision occurs during the placement of the two edges,
only their common unsettled node (i.e., “ ”) will be renamed.

(4) Due to the principles used in step 2 and 3 of the 2D P2-
Hashing algorithm, large edge sets are likely to be placed in
the hash table at the very beginning when the hash table is
almost empty, while the edge sets placed to the hash table at
the end are very small. This way, the 2D P2-Hashing can
achieve higher success probabilities for large set placements.

In addition, the proposed 2D P2-Hashing algorithm can be easily
extended to support more than two dimensions in the hash key,
i.e., replace the bipartite graph model with a multipartite graph
model.

172

Figure 5. The architecture of multi-string matching engine.

5. SYSTEM DESIGN
In this section, we present the architecture of the proposed multi-
string matching engine, as shown in Figure 5. There are three
main tables in the architecture, including two perfect hash tables
and one directly indexed table.

Character Translation Table (CTT) is used to translate input
characters from ASCII codes to the internal encodings. CTT is
used only for the 2D P2-Hashing algorithm. To support both P2-
Hashing and 2D P2-Hashing in our architecture, a selector is used
to decide if CTT is used. Please note that the number of entries in
CTT is fixed, i.e., 256 (one for each ASCII char).

Transition Table (TT) is used to store goto transitions and failure
transitions and implemented as a perfect hash table. Each entry of
TT represents one goto transition of the AC automaton and
includes five fields. The first two fields, source state ID (“S”) and
character (“C”), are used as the hash key to search the table. The
third field “D” is the ID of the destination state pointed by the
goto transition. The fourth field “M” is used to indicate if the state
in column “D” matches any rules (“1” means match and “0”
means no match). The last field “F” records the state ID pointed
by the failure transition derived from the state in field “D”.

There are several properties about the TT worth being mentioned.

(1) Although each state on the AC automaton may occur multiple
times on the first column (due to multiple goto transitions derived
from the state), it can only occur once on column “D” (because
each state is pointed by one goto transition).

(2) Each state on the AC automaton has only one failure transition.

Because of the above two properties we are able to store the
failure transition derived from each state (say d) at the same entry
where the goto transition pointing to state d is stored.

The matching rules are stored in Rule Table (RT). Every time we
visit a state associated with rules, we use the state ID as the hash
key to get the index of RT. To use memory efficiently, each entry

of RT only stores one rule. If a state associates with multiple
matching rules, we store all its associated rules in continuous
entries starting at the location pointed by the hash index, and use
one bit in each entry to indicate if the entry is the last rule
associated with the state. For instance, state 5 in Figure 2
associates with two rules (rule 2 and 6). So we store rule 2 and 6
in two continuous entries, and use the ID of state 5 as the hash key
to get the index of the first rule. Please note that one rule may
have multiple instances in the rule table if it associates with
multiple states. The details about how to construct table RT will
be presented in the next section.

Based on the architecture in Figure 5, the procedure that a
character (say c) is processed is explained as follows.

(1) Character c is used to index table CTT to get the internal
encoding of c. This step is required only when 2D P2-Hashing is
used in the construction of the perfect hash tables.

(2) The concatenation of current state ID (stored in current state
register) and the encoding of c is used as the hash key sent to the
hash unit, which returns the index to table TT. The current state
ID and character c are compared with the first two fields of the
indexed entry.

(2.1) if they are matched, we say a goto transition is found and
we (a) update the current state register using field “D” of the
indexed entry; (b) update the failure state register using field “F”
of the indexed entry; (c) search table RT (using field “D” as the
hash key) to find matched rules if field “M” is equal to 1.

(2.2) if they are not matched, a failure is returned and we (a)
update the current state register using the state ID stored in the
failure state register; (b) go back to the beginning of step (2) and
repeat the procedure.

Based on the above procedure, it is easy to see that the major
operations involved in the architecture are hash calculations and
table accesses. Therefore, the architecture is suitable for both
hardware and software implementations.

173

6. PERFECT HASH TABLE
CONSTRUCTION ALGORITHM WITH
RULE TABLE SUPPORT
In Section 4, we discuss the perfect hash table construction for
transition table. In this section, we consider a more complicated
situation in which two perfect hash tables (TT and RT) are
constructed simultaneously.

Let’s first review hash keys used in the two hash tables. The hash
key of TT is the concatenation of source state ID and input
character, while the hash key of RT is only the source state ID. To
generalize the perfect hash table construction problem, we
suppose that each rule qR corresponds to a virtual character rR .
Values of these virtual characters are all NULL. With the
introduction of virtual characters, hash keys of the two hash tables
are unified to the same form, i.e., the concatenation of source state
ID and character.

We now modify the 2D P2-Hashing algorithm to support the
constructions of the two perfect hash tables (TT and RT).

(1) The purpose of step 1 of the 2D P2-Hashing algorithm is to
convert the AC automaton V� � � �� �� �� �� �� to a bipartite
graph W � X� Y� Z�. With the consideration of two tables, we let
X � � , and Y � ^ b �r-� s rt�, where � is the number of rules.
We let the edge set Z as the union of two subsets: Z- and Z.. Each
edge in Z- corresponds to a goto transition, i.e., Z- � �[_� �]
u&_ (�� &� (^� 2:32��_� ��) ����� . Each edge in Z.
corresponds to a pair of state and matched rule, i.e., Z. � �[
_� rR] � if state _ matches rule ���.

Consider the AC automaton in Figure 2. Its bipartite graph model
with the consideration of matching rules is given in Figure 6,
where gray nodes correspond to virtual characters.

 (2) Since r-� s rt are virtual characters, they cannot be renamed
to help avoid hash collisions. The reason for representing them in
the bipartite graph is to help determine the degrees of state nodes,
which imply the difficulties of renaming the state nodes to achieve
collision-free placements in both perfect hash tables. In the second
step, the bipartite graph is decomposed to small edge sets. Since
virtual characters cannot be renamed, they are treated as fixed
nodes, and never participate in the procedure of decomposition.
One possible decomposition result of the bipartite graph in Figure
6 is given in TABLE III.

1γ 2γ 3γ 4γ 5γ 6γ

Figure 6. The bipartite graph model of AC automaton in
Figure 2 with the consideration of matching rules. (Nodes in

the first and third rows are in node set v.)

TABLE III. Decomposition result of the bipartite graph in
Figure 6

Seq 1 2 3 4 5 6 7 8 9 10
Node 11 9 7 12 3 h r 2 i 1

<11,� 5> <9,� 1> <7,� 3> <12,� 4> <3,h> <0,h> <2,r> <2,� 2> <1,i> <1,e>

Seq 11 12 13 14 15 16 17 18 19
Node 4 e 10 8 5 0 s 6 m

<4,e> <10,e> <8,s> <5,� 2> <0,s> <6,s> <6,m>
<5,� 6> <0,m>

Dependent
edge set

Dependent
edge set

(3) Step 3 is similar to what described in Section 4, except that
each dependent edge set here might have two different types of
edges. During the placement of each dependent edge set, edges
are placed into the corresponding hash tables according to their
types. Any hash collision that occurs during the placement of a
dependent edge set causes the renaming of the associated node,
and the re-placements of all edges in the set. It’s worth noting that
the definition of hash collision in the rule table is different from
that in the transition table. Consider state node 5 in TABLE III. It
is associated with two rules, R2 and R6. According to our system
design, we use the ID of state node 5 as the hash key to get the
hash index, and place the two rule instances in two continuous
entries starting at the index. The placement is successful if both of
the two entries are available; otherwise a hash collision occurs.

7. PERFORMANCE EVALUATION
In this section, we evaluate P2-Hashing and 2D P2-Hashing in
terms of hash table construction time and memory cost. The
evaluated algorithms are implemented in C++ and tested on an
AMD Athlon 64 X2 5200+ 2.60-GHz computer with 3-GB
memory. Three string rule sets are used in the evaluation. The first
is extracted from the Snort rule set (June 2009), and includes 6.4K
string rules; the second is extracted from the ClamAV rule set
(June 2009), and includes 54K string rules; the third one is a
subset of the first rule set including only 20 short rules with the
same prefix. Given the three rule sets, we first prepare the
automatons used in the evaluation. We convert each rule set into
an AC automaton, and an AC-DFA. Due to the huge memory cost
of AC-DFA, we eliminate its backward transitions to states at the
first four levels according to the scheme in [19]. To maintain the
functionality of the AC-DFA after the transition elimination, we
adopt the scheme proposed in [19], i.e., cache two states in
registers to keep track of the destination states pointed to by the
eliminated transitions. TABLE IV shows the statistics of the three
rule sets and their automatons.

TABLE IV. Three rule sets and their Automatons

Snort ClamAV Small
Set

Rule # 6.4K 54K 20
total character # 105K 6.49M 82

state # of AC automaton 77K 6.24M 24
(failure) transition # of AC automaton 77K 6.24M 23
trans. # of AC-DFA after trans. elim. 118K 7.62M /

of bits in state ID 19 25 7
of bits in Character ID (if applicable) 9 9 6

174

1.1 1.2 1.3 1.5 2.0
0

2

4

6

8

10

12

Av
e.

 n
um

be
r o

f h
as

h
tri

al
s

1/load factor

 P2-Hash (AC)
 2D P2-Hash (AC)
 P2-Hash (AC-DFA)
 2D P2-Hash (AC-DFA)

Figure 7. Average number of hash trials required for each

transition placement under Snort rule set

1.1 1.2 1.3 1.5 2
0

2

4

6

8

10

12

14

Av
e.

 n
um

be
r o

f h
as

h
tri

al
s

1/load factor

 P2-Hash (AC)
 2D P2-Hash (AC)
 P2-Hash (AC-DFA)
 2D P2-Hash (AC-DFA)

Figure 8. Average number of hash trials required for each

transition placement under ClamAV rule set

The name space of states is set four times as large as the state
number, i.e., we use two more bits in state IDs than what we
really need to uniquely represent the states. This allows us a
certain amount of unused names to select from when hash
collisions occur. The name space of characters is set twice as large
as the character number. For both AC automaton and AC-DFA,
the evaluated algorithms construct two hash tables (TT and RT).
During the experiment, all hash tables are configured with the
same load factor.

7.1 Perfect Hash Table Construction Time
The hash table construction time could be measured by the
average number of hash table insertion trials (hash trials for short)
required for every transition placement. Figure 7 and Figure 8
show the average number of hash trials required for each
transition placement when two automatons are built under
different rule sets. Both P2-Hashing and 2D P2-Hashing can
successfully construct the perfect hash tables with the given name
space sizes, even when the load factor of the hash table is set as
high as �+�D� � ? D?w.

1.1 1.2 1.3 1.5 2
1

10

100

1000

Av
e.

 n
um

be
r o

f h
as

h
tri

al
s

1/load factor

 P2-Hash
 2D P2-Hash

Figure 9. Average number of hash trials for each transition
placement under small rule set for building AC automaton

1.1 1.5 1.1 1.5
1

10

100

1000

Snort Rule Set

C
on

st
ru

ct
io

n
Ti

m
e

(s
ec

on
d)

ClamAV Rule Set

 P2-Hash (AC)
 2D P2-Hash (AC)
 P2-Hash (AC-DFA)
 2D P2-Hash (AC-DFA)

Figure 10. Perfect hash table construction time for different

rule sets (load factors are set to 1/1.1 and 1/1.5)

It’s easy to see that 2D P2-Hashing performs slightly better than
P2-Hashing. The better performance is because when compared to
P2-Hashing, 2D P2-Hashing can decompose transitions to much
smaller transition sets. Taking the AC automaton of the Snort rule
set as an example, the largest transition set in P2-Hashing that has
to be placed into the hash table as a whole includes 178 transitions,
while the largest transition set in 2D P2-Hashing includes only 14
transitions (details are not shown due to space limitations).
Therefore, 2D P2-Hashing can achieve higher success
probabilities when placing transition sets into the hash table. In
Figure 9, we compare P2-Hashing and 2D P2-Hashing under the
small rule set. We can see that the performance gap between P2-
Hashing and 2D P2-Hashing has widened.

From these figures, it is clear that the average number of hash
trials drops quickly when the load factor of the hash table
decreases. Figure 10 shows the actual running times of the
evaluated algorithms to construct the perfect hash tables with
different rule sets, automatons, and hash-table load factors. Under
the Snort rule set, when the load factor of the hash tables is 90.9%,
the 2D P2-Hashing algorithm takes only 7 seconds to construct the
perfect hash tables for AC automaton, and 3 seconds for AC-DFA.

175

Both construction times drop to only 2 seconds when the load
factor of the hash tables is reduced to 66.6%.

Due to the large size of the ClamAV rule set, 2D P2-Hashing
requires about 120 seconds and 50 seconds to build the perfect
hash tables for AC automaton and AC-DFA, respectively, when
the load factor of hash tables is 90.9%. If the load factor reduces
to 66.6%, 2D P2-Hashing requires only 50 seconds to build perfect
hash tables for AC automaton, and 30 seconds for AC-DFA. The
reason that the construction time of AC-DFA is shorter than that
of the AC automaton is because the construction of AC-DFA
doesn’t need to avoid hash collisions for failure transitions.

7.2 Storage Requirement
The perfect hash tables constructed by P2-Hashing and 2D P2-
Hashing are very compact. We compare the memory cost of our
multi-string matching engine against the existing work in TABLE
V and TABLE VI. In the evaluation, the load factors of hash
tables are assumed to be 90.9%. It can be seen that under the snort
rule set, our scheme is among the most compact implementations
of AC automaton. Compared with CDFA and B-FSM, our
solutions store all rules in a single AC automaton without rule-set
partitioning, and therefore are suitable for both hardware and
software implementations. Under the ClamAV rule set, the
memory costs of our schemes are about 1.5~1.8 times that of
CDFA, which is currently the best known scheme for the full
ClamAV rule set. To achieve the very low memory cost, CDFA
needs to partition the rule set into 32 subsets, and implements
each of them with an individual AC automaton. The large number
of parallel AC automatons makes CDFA unsuitable for software
implementation and hardware off-chip memory implementation
(due to the pin limitation of the chip). Furthermore, hardware on-
chip implementation is also infeasible, because CDFA requires
26.8MB memory, which is far beyond the capacity of on-chip
memory.

TABLE V. Memory usage comparison for Snort rule set

AC Types Rules #
of

Partitions
Total

Characters
Total

Memory
mem/
char

(2D) P2-Hash AC 6.4K 1 105K 699KB 7.6B

(2D) P2-Hash AC-DFA 6.4K 1 105K 767KB 8.33B

CDFA [17] AC-DFA 1,785 2 29.0K
129KB~
256KB

4.45B~
8.2B

B-FSM [8] AC-DFA 1.5K 4 25.2K 188KB 7.4B
Bitmap

Compression [9]
AC 1.5K 1 18.2K 2.8MB 154B

Path
Compression [9]

AC 1.5K 1 18.2K 1.1MB 60B

TABLE VI. Memory usage comparison for ClamAV rule set

AC Types Rule #
of

Partitions
Total

Characters
Total

Memory
mem/
char

(2D) P2-Hash AC 54K 1 6.49M 72.1MB 11.1B

(2D) P2-Hash AC-DFA 54K 1 6.49M 61.8MB 9.53B
CDFA[17] AC-DFA 50K 32 4.44M 26.8MB 6.1B

8. DISCUSSION AND FUTURE WORK:
INCREMENTAL UPDATE
Since the insertion and deletion of a rule can be decomposed to
multiple insertions or deletions of transitions, we only consider
how to delete a transition from and insert a transition into the hash
table. Deleting a transition from the hash table is trivial, and is
similar to performing a hash table lookup. Inserting a transition,
however, is not that natural, because hash collisions may occur
during the insertion. According to the main principle of this paper,
when hash collision occurs, we should rename the source state or
the labeled character of the conflicting transition, and re-place all
related transitions. Given the fact that each character usually
associates with tens of thousands of transitions in large rule set,
renaming characters is infeasible. So the only choice is to rename
the source state of the conflicting transition until all of its
associated transitions are placed into the hash table without
collision. However, there are some states associated with a large
number of transitions, say 100 transitions (we call these states
large states, and call the numbers of associated transitions the
sizes of the states). The probability of placing such a large number
of transitions into an almost full hash table without any collision
is low.

Actually, instead of renaming the large state until all of its
associated transitions are placed into collision-free locations, we
can let its transitions kick out the transitions currently resident in
the conflicted locations (similar to the scheme used in Cuckoo
hashing [16]), if the states associated with these resident
transitions are all relatively small. In cases, some states that are
kicked out are still too large. They can continue to kick out
smaller states, until the states to be renamed are small enough.
Then we just need to rename these small states to achieve
collision-free placements. This way a complicated problem is
decomposed to many simpler problems. In fact, analysis on the
AC automatons of Snort and ClamAV rule sets shows that more
than 99% of states have only three or fewer transitions (as shown
in Figure 1). Therefore, the above scheme seems feasible. In our
future work, we will study and investigate the incremental update
scheme.

9. CONCLUSION
This paper proposes a multi-dimensional perfect hash table
construction algorithm named P2-Hashing, based on which the
well-known AC automaton can be implemented by very compact
perfect hash tables. P2-Hashing requires no memory access to
generate the hash index and guarantees to return the hash result
within the time of exact one memory access. The processing of
each character therefore requires only one memory access in a
pipelined architecture. This property is very important for NIDS
to survive under the attack of malicious traffic. It should be also
noted that the use of character translation table won’t change the
above property, since the character translation table is not on the
critical path of the AC automaton pipeline operation and works
independently to the hash tables.

10. REFERENCES
[1] A.V. Aho and M.J. Corasick, “Efficient string matching: An

aid to bibliographic search,” Communications of the ACM,
vol. 18, no. 6, pp. 333-340, 1975.

[2] L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred,
“Statistical approaches to ddos attack detection and response,”
in DISCEX, 2003.

176

[3] L. Spitzner, Honeypots: Tracking Attackers. Addison-
Wesley, 2002.

[4] S.Wu and U. Manber, “A fast algorithm for multi-pattern
searching,” Technical Report TR-94-17, Department of
Computer Science, University of Arizona, 1994.

[5] S. Dharmapurikar and J. W. Lockwood, “Fast and scalable
pattern matching for network intrusion detection systems,”
IEEE Journal of Selected Areas in Communications, vol. 24,
no. 10, 2006.

[6] H. Lu, K. Zheng, B. Liu, X. Zhang, and Y. Liu, “A memory-
efficient parallel string matching architecture for high-speed
intrusion detection,” IEEE Journal of Selected Areas in
Communications, vol. 24, no. 10, 2006.

[7] N. Hua, H. Song, T.V. Lakshman, “Variable-Stride Multi-
Pattern Matching For Scalable Deep Packet Inspection”, in
IEEE INFOCOM, 2009.

[8] J. van Lunteren, “High-Performance Pattern-Matching for
Intrusion Detection,” in IEEE INFOCOM, 2006.

[9] N. Tuck, T. Sherwood, B. Calder, and G. Varghese,
“Deterministic Memory-Efficient String Matching
Algorithms for Intrusion Detection,” in IEEE INFOCOM,
2004.

[10] M. Becchi and P. Crowley, “ Efficient Regular Expression
Evaluation: Theory to Practice,” In Proceedings of the 2008
ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS), San Jose, CA,
November, 2008.

[11] F. Yu , “High speed deep packet inspection with hardware
support,” PhD dissertation of University of California at
Berkeley, Berkeley, CA, 2006

[12] A free lightweight network intrusion detection system for
UNIX and Windows. [Online]. Available:
http://www.snort.org.

[13] ClamAV. [Online]. Available: http://www.clamav.net.
[14] J. van Lunteren and A.P.J. Engbersen, “Fast and scalable

packet classification,” IEEE Journal of Selected Areas in
Communications, vol. 21, no. 4, pp. 560-571, May 2003.

[15] N. S. Artan and H. J. Chao, “Tribica: Trie bitmap content
analyzer for high-speed network intrusion detection,” in
IEEE INFOCOM, 2007

[16] R. Pagh and F. F. Rodler, “Cuckoo hashing,” in ESA, 2001.

[17] S. Kumar, J. Turner, and P. Crowley, “Peacock hashing:
Deterministic and updatable hashing for high performance
networking,” in IEEE INFOCOM, 2008.

[18] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G.
Varghese, “Beyond bloom filters: from approximate
membership checks to approximate state machines,” in ACM
SIGCOMM, 2006.

[19] T. Song, W. Zhang, D. Wang, and Y. Xue, “A memory
efficient multiple pattern matching architecture for network
security,” in IEEE INFOCOM, 2008.

[20] L. Tan, T. Sherwood, “A High Throughput String Matching
Architecture for Intrusion Detection and Prevention,” in 32nd
Annual International Symposium on Computer Architecture,
ISCA, 2005.

[21] Z.K. Baker, V. K. Prasanna, “High-throughput linked-pattern
matching for intrusion detection systems,” in symposium on
Architecture for Networking and Communications Systems
(ANCS), Oct. 2005.

[22] I. Sourdis, D. N. Pnevmatikatos, and S. Vassiliadis,
“Scalable multigigabit pattern matching for packet
inspection,” IEEE Trans. VLSI Syst., 16(2):156–166, 2008.

[23] Y.-H. E. Yang and V. K. Prasanna, “Memory-efficient
pipelined architecture for large-scale string matching,” in
17th Annual IEEE FCCM, April 2009.

[24] S. Kumar, J. Turner, P. Crowley, and M. Mitzenmacher,
“HEXA: Compact Data Structures for Faster Packet
Processing,” In Proceedings of the Fifteenth IEEE
International Conference on Network Protocols (ICNP), pp.
246-255, 2007.

[25] N. S. Artan, M. Bando, and H. J. Chao, “Boundary Hash for
Memory-Efficient Deep Packet Inspection,” IEEE
International Conference on Communications (ICC 2008),
Beijing, PRC, May 19-23, 2008.

[26] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit Rate
Packet Pattern-Matching Using TCAM,” In Proceedings of
the Fifteenth IEEE International Conference on Network
Protocols (ICNP), 2004.

[27] P. Piyachon and Y. Luo, “Efficient memory utilization on
network processors for deep packet inspection,” In
symposium on Architecture for Networking and
Communications Systems (ANCS), 2006.

177

