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ABSTRACT 
Aho-Corasick (AC) automaton is widely used for multi-string 
matching in today’s Network Intrusion Detection System (NIDS). 
With fast-growing rule sets, implementing AC automaton with a 
small memory without sacrificing its performance has remained 
challenging in NIDS design. In this paper, we propose a multi-
dimensional progressive perfect hashing algorithm named P2-
Hashing, which allows transitions of an AC automaton to be 
placed in a compact hash table without any collision. P2-Hashing 
is based on the observation that a hash key of each transition 
consists of two dimensions, namely a source state ID and an input 
character. When placing a transition in a hash table and causing a 
collision, we can change the value of a dimension of the hash key 
to rehash the transition to a new location of the hash table. For a 
given AC automaton, P2-Hashing first divides all the transitions 
into many small sets based on the two-dimensional values of the 
hash keys, and then places the sets of transitions progressively 
into the hash table until all are placed. Hash collisions that 
occurred during the insertion of a transition will only affect the 
transitions in the same set. The proposed P2-Hashing has many 
unique properties, including fast hash index generation and zero 
memory overhead, which are very suitable for the AC automaton 
operation. The feasibility and performance of P2-Hashing are 
investigated through simulations on the full Snort (6.4k rules) and 
ClamAV (54k rules) rule sets, each of which is first converted to a 
single AC automaton. Simulation results show that P2-Hashing 
can successfully construct the perfect hash table even when the 
load factor of the hash table is as high as 0.91. 

Categories and Subject Descriptors 
C.2.0 [Computer-Communication Networks]: General Security 
and protection (e.g., firewalls); C.2.6 [Internetworking]: Routers 

General Terms 
Algorithms, Design, Security 

Keywords 
Aho-Corasick Automaton; Perfect Hash Table; Hash Collision; 
Multi-string Matching 

1. INTRODUCTION 
Network Intrusion Detection System (NIDS) has been widely 
deployed in today’s Internet to safeguard the security of network 
operations. Among the many network-based intrusion detection 
techniques [2][3][10][11], multi-string matching is commonly 
used because of its precision and accuracy in attack detection. 

Many multi-string matching schemes have been proposed in the 
past [4][5][6][7][8][9], most of which derive from the classic 

Aho-Corasick (AC) automaton [1] as its worst case performance 
is deterministic, linear to the length of the input stream and 
independent of the rule set size. Therefore it is impossible for an 
attacker to construct a worst-case traffic that can slow down the 
NIDS and let malicious traffic escape the inspection. In fact, many 
popular NIDS and anti-virus systems, such as Snort [12] and 
ClamAV [13], already implemented AC automaton as their multi-
string matching engines. With fast-growing rule sets, 
implementing AC automaton with a small memory without 
sacrificing performance becomes a major challenge in NIDS 
design. 

There are many schemes that could be used to efficiently 
implement dense automatons1. We can use a two-dimensional 
direct-indexed table to store all the transitions, where each row 
corresponds to a state, and each column corresponds to a symbol. 
The intersection between each row and each column stores the 
row ID of the next hop state. In order to reduce memory cost, 
HEXA [24] was proposed to reduce the number of bits stored in 
each field of the two-dimensional table using the historical 
scanning information carried by the input stream. Although a two-
dimensional table works fine for the dense automaton, it is not a 
good solution to implement the sparse automaton (such as AC 
automaton, which has the transition-to-state ratio normally 
between 1 and 2), because of the memory waste by the non-
existing transitions. Besides the two-dimensional table, another 
way of implementing the automaton is to store each state as a 
whole data structure, and connect parent and child states by 
pointers in the parent states. However, the wide distribution of 
state sizes (i.e., the numbers of transitions of states) on the AC 
automaton makes the design of a compact state structure a very 
difficult task.  
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Figure 1. The state size distribution of AC automaton based 

on the Snort rule set (only shows states with size <= 30) 

                                                                 
1 An automaton is called dense automaton if the ratio of its total 

transition number to its total state number is close to 256. 
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Figure 1 shows the distribution of state sizes on the AC automaton 
based on the Snort rule set. We can see that the distribution is 
quite wide and unbalanced, and it is very hard to design a compact 
state structure storing pointers pointing to the child states. 

Hash table is a good solution to implement the sparse automaton 
such as AC automaton, because we no longer need to store the 
non-existing transitions or keep the complicated state structure. 
Compared to other AC automaton implementation schemes, such 
as bitmap-compression AC and path-compression AC [9], storing 
transitions directly in a hash table can avoid unnecessary memory 
waste, and simplify the process of making a transition decision. 
The main problem involved in hash table design is the hash 
collision, which might increase the memory access times for each 
transition decision and cause instability of the processing speed. 
Furthermore, hash collision might be exploited by attackers to 
degrade system performance. In [8], Lunteren proposes a BFSM-
based pattern-matching (BFPM), which uses a hash table 
construction scheme named Balanced Routing Table (BART) [14] 
to limit the maximum number of collisions of any hash index by a 
configurable bound � (�=4 is used in [8]). When a transition 
decision is made, � transitions are read out from the same entry of 
the hash table simultaneously. After � parallel comparisons, the 
correct transition can be decided. Storing multiple transitions in 
each entry, however, increases the memory bus width and causes 
unnecessary waste of memory space. Furthermore, � comparisons 
required for each transition decrease the scheme’s efficiency in 
software implementation. 

Therefore, an efficient perfect hashing scheme for AC automaton 
is desirable in high-performance NIDS design. Although there are 
many perfect hashing and alternative algorithms available in 
literature, most of them require multiple memory accesses to 
generate the hash index (traversing a tree structure) [15][25], or 
need more than one memory access in the worst case to get the 
correct hash index for a hash table lookup [16][17][18]. Due to the 
dependency between two contiguous transitions made on the 
automaton, one hash query can start only after the previous hash 
query returns a new current state ID (without the new current state 
information, the next transition cannot be made). In other words, 
hash queries have to be performed in serial. The time required to 
perform one hash query is equal to the sum of the time generating 
the hash index and the time accessing the hash table. If the hash 
unit takes too much time generating the hash index or accessing 
the hash table, the matching speed of the system will be degraded. 

Our main contributions in this paper are summarized as follows. 

1. We propose a multi-dimensional progressive perfect hashing 
algorithm, named P2-Hashing, that allows transitions of an 
AC automaton to be placed in a compact hash table without 
any collision. P2-Hashing supports both un-optimized and 
optimized AC automatons.  

2. Different from many existing perfect hashing schemes which 
require additional storage for their own representations, P2-
Hashing requires no storage overhead to implement the 
perfect hashing function (except for the small fixed 256-entry 
character translation table). This is achieved by embedding 
information directly into the AC automaton structure. 

3. P2-Hashing requires no memory access to generate the hash 
index (a character translation table needs to be accessed one 
time slot before the generation of the hash index, but it is not 
on the critical path of the AC automaton operation and 
therefore can be implemented by a separate pipeline stage). 

This property is important to AC automaton operation 
because only one hash query can be performed on the fly due 
to dependency between two contiguous transitions made on 
the automaton. A fast hash index generation can speed up the 
automaton operation.  

4. A unified perfect hashing solution has been presented to 
implement all search tables in the AC automaton 
implementation, which include transition table and rule ID 
table. An important advantage of this unified perfect hashing 
solution is that it avoids pointers which are normally required 
to connect different tables, so that the memory cost is 
minimized. 

The rest of the paper is organized as follows. Section 2 provides 
the background of the paper, and reviews the related work. 
Section 3 gives the problem statement and terms to be used. 
Section 4 proposes two perfect hash table construction algorithms, 
including P2-Hashing and its two-dimensional version. In Section 
5, we give the system design of the proposed multi-string 
matching engine, based on which, in Section 6 we introduce how 
to construct perfect hash table for rules. Section 7 presents the 
simulation results. Section 8 discusses an incremental update 
scheme on the proposed perfect hash table. Finally, Section 9 
concludes the paper. 

2. BACKGROUND AND RELATED WORK 
2.1 Aho-Corasick Automaton 
Aho-Corasick (AC) automaton [1] is one of the most used 
algorithms in multi-string matching.  It is well-known for its 
deterministic matching throughput, and therefore is not vulnerable 
to attack traffic. Given a set of string patterns (also called rules in 
this paper), the construction of an AC automaton consists of two 
steps. In the first step, a trie structure is created based on the 
strings. Each state/node on the trie corresponds to a valid prefix of 
strings. The edges on the trie are called the goto transitions of the 
AC automaton. In the second step, failure transitions are added 
from each state � to a state � if the prefix represented by state � is 
the longest suffix of the prefix represented by state �. Consider a 
set of string patterns {hers, he, his, him, me, she}. Its AC 
automaton is shown in Figure 2, in which the solid arrows 
represent the goto transitions, while the dotted arrows represent 
the failure transitions. 

 

 
Figure 2. AC automaton for rule set {hers, he, his, him, me, 

she}. For simplicity, failure transitions to the root state are not 
shown. 
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Given a active state � and an input character �, the AC automaton 
will first check if there is a goto transition from state � labeled 
with �. If such a goto transition exists, the state pointed by the 
goto transition will be the active state in the next time slot; 
otherwise, the active state in the next time slot will be the state 
pointed by the failure transition of state � and then input character 
� will be examined again in the next time slot.  

Actually, AC automaton has two versions. The one we just 
introduced is the un-optimized version. The advantage of the un-
optimized version is that an AC automaton with � states has only 
� � � goto transitions and � � � failure transitions; therefore, the 
storage complexity of transitions is relatively low. For an input 
stream with length 	, the number of state transitions to be made 
during matching in the worst cast is 
	. 

The optimized version of AC automaton is actually a 
Deterministic Finite Automaton (DFA). Based on the un-
optimized version, the optimized version of AC automaton could 
be constructed by adding goto transitions for every character from 
every state and removing the failure transitions.  Compared to the 
un-optimized version, the optimized version only needs to make 
one state transition for each input character. Therefore its worst-
case throughput is twice the throughput of the un-optimized 
version. The main disadvantage of the optimized version is its 
huge memory cost, since each state has 256 goto transitions 
corresponding to 256 characters. 

In the remainder of this paper, unless specifically noted, we use 
AC automaton to denote its un-optimized version, and use AC-
DFA to denote the optimized version. For the sake of simplicity, 
we use the word “transition” to refer the goto transition if there is 
no confusion in the context. 

2.2 Memory Optimization of Aho-Corasick 
Automaton 
Many solutions aiming to reduce the memory cost of AC 
automaton and AC-DFA have been proposed in literature 
[8][9][19][20]. Tuck et al. [9] apply bitmap compression and path 
compression on AC automaton to save the memory cost of non-
existing transitions. Tan et al. [20] propose an approach to bit-split 
the AC-DFA into several small AC-DFAs to reduce the total 
memory requirement. Song et al. [19] and Lunteren [8] observed 
that a large fraction of transitions on AC-DFA are backward to 
states at the first three levels (the root state is at level 1). Based on 
this observation, Lunteren proposes to remove transitions 
backward to the first two levels by storing them in a separate 256-
entry table; while Song [19] proposes a Cached Deterministic 
Finite Automate (CDFA) model, based on which backward 
transitions to states at level 3 can also be removed. The main idea 
of CDFA is to maintain more than one active state in AC-DFA 
(one at the root state, one at states at level 2, and one at states at 
other levels). It has been shown that after the elimination of 
backward transitions to states at the first three levels, the number 
of transitions of AC-DFA is approximately equal to the number of 
transitions of AC automaton. Furthermore, it is observed that the 
total number of transitions could be significantly reduced if the 
rule set is partitioned into multiple subsets, and implemented by 
multiple small AC-DFAs [8][19]. 

Besides the memory optimization, much research work focuses on 
accelerating the processing speed of AC automaton/AC-DFA 
[5][6][7]. 

2.3 Other Multi-string Matching Schemes 
Yu et al. [26] proposed a gigabit rate multi-string matching 
scheme based on TCAM.  Piyachon and Luo [27] proposed a 
sophisticated memory model for multi-string matching 
implementation based on Network Processors (NPs). 

In addition, there are also many FPGA-based schemes proposed 
for multi-string matching [21][22][23], which map the rule set 
directly to the pure logic  of FPGA, and can achieve desirable 
high performance. A main limitation of FPGA-based schemes is 
that when rules are changed, it takes considerable time to re-
synthesize the design and reprogram the FPGA. 

3. PROBLEM STATEMENT 
In this section, we define the terms to be used in this paper, and 
give the problem statement. 

An AC automaton is formally defined as a 5-tuple ��
��� �� �� �� �� , which consists of 

• A finite set of states, �, where each state is represented by 
a number ranging from 0 to ��� � �, among which 0 is 
the start (root) state;  

• A finite input character set, �, called alphabet; 
• A set of accepting states, � � �; 
• A goto transition function that,  ��� � � � ��������; 
• A failure function that, �� � � � � � �. 

A hash table is a 3-tuple ! � �"� #� $�, consisting of 

• A set of keys, ", where each key is used as the input of 
the hash function to obtain the index of the hash table; 

• A table S, which has at least �"� entries, i.e., �$� % �"�; 
• A hash function that, #� " � � , where �  is the set of 

natural numbers from 0 to �$� � �; the hash function is 
called a perfect hash function if for &�� ' ( "�and�� ) '� 
we have �#�� ) #'� . In this paper, we call #��  the 
hash index of key �. 

A hash table is called a perfect hash table if the hash function 
associated with the hash table is a perfect hash function. The load 
factor of a hash table is defined as * � �"�+�$�, which describes 
how full the hash table is. Normally, a larger * implies a high 
probability of hash collisions.  

We assume that the hash function used in our hash table 
construction is randomly selected from a universal hash function 
family and is uniform hashing, i.e., each hash key is equally likely 
to hash into any of the �$� entries of the hash table, independently 
of where any other key has hashed to. 

Our main objective in this paper is to store all the transitions of 
AC automaton in a perfect hash table. Each transition on the AC 
automaton takes one entry of the hash table in the form of 
“(source state ID, input character) , destined state ID”, where 
“(source state ID, input character)” stands for the concatenation of 
“source state ID” and “input character” in binary mode, and works 
as the key of the hash function, while “destined state ID” is the 
result we hope to get from the hash table access. 

Besides the AC automaton, we hope the proposed perfect hashing 
algorithm could also be used for AC-DFA. Considering the huge 
memory cost of AC-DFA, we use the scheme proposed in [19] to 
eliminate the backward transitions to states at the first several 
levels, and store only the remaining transitions in the perfect hash 
table. Actually, AC-DFA could be viewed as a special case of AC 
automaton, i.e., AC automaton without failure transition. 
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Therefore, we present the perfect hash table construction 
algorithm based on the general case: AC automaton. 

4. PERFECT HASH TABLE 
CONSTRUCTION ALGORITHM 
4.1 Progressive Perfect Hashing Algorithm 
We first present two important observations that will be used in 
our perfect hash table construction algorithm. 

(1) The first is about the hash function. If a hash collision occurs 
when we try to place a new key into the hash table, the collision 
might be avoided if we could change the value of the key. This 
observation is based on the fact that the hash index of a key 
depends only on the hash function and the value of the key. If the 
value of the key is changed, the hash index is also changed and, 
accordingly, the original hash collision may be avoided. 

(2) The second observation is that the ID of each state of AC 
automaton could be named as any values, as long as there are no 
two states being named with the value. 

Based on these two observations, we designed a scheme called 
Progressive Perfect Hash (P2-Hashing) to place the transitions of 
AC automaton in a hash table without collision. To better 
illustrate our scheme, in this section, we only consider storing 
goto transitions. In Section 6, we discuss the situation of storing 
goto transitions, failure transitions, and rule IDs. 

The main idea of P2-Hashing is to divide the goto transitions of a 
given AC automaton into multiple independent sets according to 
their source states, and place these transition sets in the hash table 
in decreasing order of their sizes. The transitions of each set are 
placed into the hash table as a whole. Any hash collision 
occurring during the placement of a set causes the set placement 
failure, and the already-placed transitions in this set are removed 
from the hash table. Then the source state shared by transitions in 
this set is renamed, and another set placement trial is performed. 
The renaming operation repeats until a successful set placement is 
achieved, and then the placement of the next transition set starts. 

Consider the AC automaton shown in Figure 2, which has 12 
transitions. The transition sets associated with source states are 
shown in Table I. Suppose we want to store these transitions into 
a perfect hash table with 12 entries. With P2-Hashing, we first 
place the set associated with state 0, since it has the most 
transitions. It is easily seen that the success probability that all 
three transitions in this set are placed into the hash table without 
collision is -.

-.
/ --
-.
/ -0
-.

. Suppose the set associated with state 4 is 

the last set to be placed.  Its success probability is -
-.

. 

Table I.  Transition Sets of Source States 
12324� 12324�� 12324�5 12324�
 12324�6 12324�� 12324�7 12324�8
9 �:;�� 9��4;�
 95�<;�= 9
�>;�6 96�<;�? 9� �4;��� 97�:;�8 98�4;�@
9 �A;�� 9��B;�5 95�A;��

9 �<;�7  

It should be noted that the sequence of set placements has a great 
impact on their success probabilities. Consider the above example 
again, if we place the set associated with state 0 last, the success 
probability of the set placement is only C

-.
/ .
-.
/ -
-.

�  D  78. The 
reason for this low success probability is that we must place all 
transitions of each set into the hash table without collision 
simultaneously. If we place the largest set last when the hash table 
is almost full, the success probability would become very low. 

That is why P2-Hashing places larger transition sets into the hash 
table first. 

Formally, the success probability of a set placement is determined 
by the current load factor of the hash table *� and the number of 
transitions in the set E�� and could be approximately calculated 
with the following inequality. 

��F��G���H�����GI�J���GKGLI� M � � *�N (1) 

The success probability of a set placement determines the average 
number of state renamings required before a successful set 
placement. Suppose * �  D@, E � � , the success probability is 
less than �+� 
8 , which means that, on average, we need to 
rename the state 1024 times before achieving a successful set 
placement. Accordingly, the number of bits to encode the state 
IDs is expected to be 10. If E increases to 20, we need to rename 
the state 1 million times on average before achieving a successful 
set placement, and the number of bits used to represent state IDs 
increases to 20.   

Apparently, if both E� and *  happen to be large during the 
placement of a transition set, the performance of the P2-Hashing 
algorithm would become very poor, not only because of the long 
running time of state renamings (during each state renaming, 
many transitions may need to be re-placed), but also the high 
storage cost required by the long state IDs. Fortunately, AC 
automatons are normally sparse automatons, especially for large 
rule sets. As shown in Figure 1, only a few of states have 
relatively large number of goto transitions (say more than 10 goto 
transitions), and 99% of states have only three or fewer transitions. 
By placing large sets first we can avoid the situation that 
both�E�and * are large. 

4.2 Two-Dimensional P2-Hashing Algorithm 
A main limitation of the P2-Hashing algorithm is that it cannot 
handle very well the situation in which a few states take the 
majority of the total transitions (especially for small rule sets). 
Consider the AC automaton shown in Figure 3, which includes 23 
rules with the same length. All of these rules have the same prefix 
of “abc.” Suppose we want to use P2-Hashing to place the 26 
transitions of the AC automaton into a hash table with 28 entries. 
According to P2-Hashing, we first place the transition set 
associated with state “3”, since it is the largest transition set with 
23 transitions.  

It is easily seen that the success probability of this set placement is 
O .PQR

.P
S..

RT0 �D7 � � QU . That means, on average, we have to 
rename state “3” by � U  times to achieve a successful set 
placement, and use 20 bits to name each state. Please note that 
ideally, 27 states of the AC automaton only require 5 bits for 
unique representation. 

 
Figure 3. AC automaton for a set of rules with the same prefix. 

For simplicity, failure transitions are not shown (here all to 
the root state). 
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The P2-Hashing algorithm introduced above changes the hash 
indexes of transitions by renaming their source states. In fact, the 
input key of the hash function consists of two dimensions: source 
state ID and input character. We can achieve the target of 
changing hash indexes by changing the value of either dimension. 
When the values of characters are changed, we only need a 256-
entry character translation table to record the new encoding of 
each character. 

Now we need to decide the sequence in which transitions should 
be placed into the hash table, and the dimensions of transitions 
that should be renamed when hash collisions occur during the 
placements. The main challenge involved in this process is that 
when a state or character is renamed, many transitions could be 
affected, including those already-placed transitions. How can we 
avoid the fluctuation of the hash table, i.e., transitions keep being 
placed in and removed from the hash table? Aiming to resolve this 
problem, we present a two-dimensional P2-Hashing (2D P2-
Hashing for short) algorithm, which consists of three steps. 

(1) In the first step, we model the AC automaton V� �
��� �� �� �� �� as a bipartite graph, which is formally defined as a 
3-tuple W � X� Y� Z�, consisting of 

• A set of nodes, X; 
• A set of nodes, Y; 
• A set of edges, Z; &[ F� \ ]( Z satisfies that F ( X� \ (

Y. 

In this model, we set  X � �, Y � ^, and let Z � �[ _� � ] �&_ (
�� &� ( ^� 2:32��_� �� ) �����. In other words, each state in AC 
automaton corresponds to a node in set X, each character in AC 
automaton corresponds to a node in set Y, and each transition in 
AC automaton corresponds to an edge in set Z. To better illustrate 
the scheme, we name nodes in set X state nodes, and nodes in set 
Y character nodes. It is easy to see that storing transitions of the 
AC automaton in a perfect hash table is equivalent to storing 
edges of the bipartite graph in the perfect hash table, where the 
concatenation of F and \ of each edge [ F� \ ] is used as the key 
of the hash function. 

Consider the AC automaton in Figure 2 as an example. Its 
bipartite graph model is shown in Figure 4, in which state node set 
X includes 13 nodes � `�
�, and character node set Y includes 6 
nodes �#� G� a� �� �� K�. Each edge in the bipartite graph represents 
a transition on the AC automaton. 

On the bipartite graph, the number of edges connected to each 
node reflects the impact of the node during the perfect hash table 
construction. The more edges a node has, the more difficult to 
rename it to achieve a collision-free placement of all its connected 
edges. 

 

 
Figure 4. The bipartite graph model of the AC automaton in 

Figure 2.  

 

Algorithm 1. Bipartite Graph Decomposition 
Input:   

Bipartite graph W � X� Y� Z�; 
 
Output:  

A sequence number �\� for every node \ ( X b Y;  
A dependent edge set c\� for every node \ ( X b Y; 

 
Algorithm: 
�\� d� �X		�&�\ ( X b Y�;  
c\� d� �X		�&�\ ( X b Y�; 
for e d� �; e M �X� f �Y�; e f f� ; 
{ 

Among all nodes in bipartite graph W, choose a node, say \, 
that has the least connected edges; if there are multiple 
qualified nodes, randomly select one; 
�\� d� e; 
c\� d�the set of edges connected to node \; 
Remove node \ and its connected edges from the bipartite 
graph W; 

} 
 

(2) In the second step, we decompose edges of the bipartite graph 
into �X� f �Y� sorted edge sets (some sets could be empty), and 
associate each edge set with a node in X b Y. We call each edge 
set the dependent edge set of its associated node. The bipartite 
graph decomposition algorithm is shown in Alg. 1. 

The bipartite graph decomposition consists of �X� f �Y�� phases, 
and starts with all nodes unassociated. During each phase, among 
all nodes in the bipartite graph, we choose a node, say \, that has 
the fewest connected edges (if there are multiple qualified nodes, 
we choose an arbitrary one). We allocate all edges connected to 
node \ to node \’s dependent edge set, and remove node \ and its 
connected edges from the bipartite graph. 

After the bipartite graph decomposition, each node is assigned a 
dependent edge set and a sequence number. For the bipartite 
graph in Figure 4, the dependent edge sets of nodes and the 
sequence in which they are removed from the bipartite graph are 
shown in TABLE II. 

TABLE II.  Dependent Edge Sets of Nodes After The Bipartite 
Graph Decomposition (based on the bipartite graph in Figure 

4) 
Seq 1 2 3 4 5 6 7 8 9 10

Node 11 9 7 5 12 3 h 2 r 4
<3,h> <0,h> <2,r> <4,e>

Seq 11 12 13 14 15 16 17 18 19

Node 10 e 1 i 8 0 s 6 m
<10,e> <1,e> <1,i> <8,s> <0,s> <6,s> <6,m>

<0,m>

Dependent 
edge set

Dependent 
edge set  

The complexity of the bipartite graph decomposition is linear to 
the number of edges on the bipartite graph, although we need to 
select a node with the fewest connected edges in each phase. This 
is due to the following properties of the AC automaton: 

� The total number of character nodes is at most 256; 

� Although there are many state nodes, the number of edges 
connected to each state node ranges only from 0 to 256; 
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� Each time when a node is removed from the bipartite graph, 
the numbers of edges of its connected nodes are decreases 
by only one.  

According to these prosperities, we can maintain a sorted list for 
character nodes and 257 linked lists for state nodes with different 
numbers of connected edges. Based on the 258 lists, the operation 
required in each phase is proportional to the number of edges 
removed in the phase. 

(3) In the third step, edge sets obtained in the second step are 
placed into the hash table in reverse order of their removals from 
the bipartite graph. In other words, the edge set removed from the 
bipartite graph last is the first placed into the hash table. The 
perfect hash table construction algorithm is shown in Alg. 2. 

Algorithm 2 starts with all nodes of the bipartite graph un-named. 
Names are assigned to these nodes in the decreasing order of their 
sequence numbers. Each time we name a node, we place edges of 
its dependent edge set into the hash table. If hash collision occurs 
during the placement, we rename the node and re-place all of its 
dependent edges. This process repeats until all edges in its 
dependent edge set are successfully placed into the hash table 
simultaneously. Then we say the name of this node is settled.  

Consider the dependent edge sets in TABLE II. Character node K 
is the first to be assigned a name because it has the largest 
sequence number. Since node K   has no dependent edge, any 
name for node K is acceptable. After that, state node 5 is named, 
and its dependent edge [ 5�K ] is placed into the hash table. 
Please note that the other endpoint of edge [ 5�K ] (which is K) 
has already been named. The next node to be named is �, which 
has one dependent edge [ 5� � ]. Please also note that the other 
endpoint of edge  [ 5� � ] (which is 6) is already named. When a 
hash collision occurs during the placement of edge [ 5� � ], only 
node “�” is renamed, while the ID of node “5” will never be 
changed. This is because some other edges connected to node “5” 
(the dependent edge set of node “6”) are already placed in the 
hash table. If node “5” was renamed, all these edges would be re-
placed again, which might cause further hash collisions. The 
above process repeats until every node has been named. After this 
procedure, all edges are placed in the hash table without collision. 

2D P2-Hashing may fail when all names in the name space have 
been tried before a collision-free placement of a node’s dependent 
edge set could be found. Two measures could be employed to 
avoid the failure: (1) increase the name spaces of state nodes and 
character nodes; (2) reduce the load factor of the hash table. 
However, both measures would increase the memory cost of the 
perfect hash table. 

The 2D P2-Hashing algorithm has several characteristics, which 
are summarized as follows. 

(1) By breaking edges of the bipartite graph into small 
independent sets, the impact of hash collision during the 
placement of an edge is limited to a relatively small range. 
Consider the AC automaton in Figure 3; after step 2 of the 
2D P2-Hashing, transitions of the AC automaton (i.e., edges 
of the biparitite graph) will be divided to 26 independent 
single-transition sets. In step 3 of the 2D P2-Hashing, these 
26 single-transition sets will be placed into the perfect hash 
table seperately. The failure of the placement of a transition 
set only affects one transition (resulting in a replacement of 
the single transition). As a result, the success probabilities of 
set placements are significantly increased. 

Algorithm 2. Perfect Hash Table Construction 
Input:  

A sequence number �\� for every node \ ( X b Y;  
A dependent edge set c\� for every node \ ( X b Y; 
Name space �$ghihj and �$klimikhjm  // contain available IDs 
for state nodes and character nodes, respectively.  
 

Output: 
A perfect hash table n; 
A Character Translation Table opp, indexed by the ASCII 
codes of characters; 
 

Algorithm: 
Set n, opp, and 1pp empty; 
Sort nodes in �X b Y in decreasing order of their sequence 
numbers; 
for every node �F in the sorted set �X b Y  do  
//Without loss of generality, suppose F is a state node (the 
following code should be changed accordingly if F is a 
character node); 
{ 

(1)    Among all available IDs in �$ghihj, randomly choose an ID, 
say ���, which hasn’t been tried by node F; if all IDs in 
�$ghihj have already been tried by node F, an error is 
returned; 
Name node F as ��� and place all edges of cF� into hash 
table n;  //for every edge [ F� \ ] in cF�, it’s guaranteed 
that \ has already been named;  
if no hash collision occurs during the placement of cF� 

remove ��� from �$ghihj; 
         else 

goto (1); 
} 
 

(2) With the 2D P2-Hashing, once the name of a node is settled, 
it will never be changed again. This way, we can avoid the 
fluctuation of the hash table. 

(3) When an edge set is about to be placed into the hash table, 
every edge in the set has one settled end node and one 
unsettled end node (which is a common node shared by all 
edges in the set). When hash collisions occur during the set 
placement, only the common unsettled node needs to be 
renamed. Consider the edge set dependent on node “ ” in 
TABLE II; it has two edges, which are [  � � ] , and 
[ 5�K ], respectively. When this edge set is about to be 
placed in the hash table, node “�” and “m” are already settled. 
If any collision occurs during the placement of the two edges, 
only their common unsettled node (i.e., “ ”) will be renamed. 

(4) Due to the principles used in step 2 and 3 of the 2D P2-
Hashing algorithm, large edge sets are likely to be placed in 
the hash table at the very beginning when the hash table is 
almost empty, while the edge sets placed to the hash table at 
the end are very small. This way, the 2D P2-Hashing can 
achieve higher success probabilities for large set placements. 

In addition, the proposed 2D P2-Hashing algorithm can be easily 
extended to support more than two dimensions in the hash key, 
i.e., replace the bipartite graph model with a multipartite graph 
model. 
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Figure 5. The architecture of multi-string matching engine. 

5. SYSTEM DESIGN 
In this section, we present the architecture of the proposed multi-
string matching engine, as shown in Figure 5. There are three 
main tables in the architecture, including two perfect hash tables 
and one directly indexed table. 

Character Translation Table (CTT) is used to translate input 
characters from ASCII codes to the internal encodings. CTT is 
used only for the 2D P2-Hashing algorithm. To support both P2-
Hashing and 2D P2-Hashing in our architecture, a selector is used 
to decide if CTT is used. Please note that the number of entries in 
CTT is fixed, i.e., 256 (one for each ASCII char).  

Transition Table (TT) is used to store goto transitions and failure 
transitions and implemented as a perfect hash table. Each entry of 
TT represents one goto transition of the AC automaton and 
includes five fields. The first two fields, source state ID (“S”) and 
character (“C”), are used as the hash key to search the table. The 
third field “D” is the ID of the destination state pointed by the 
goto transition. The fourth field “M” is used to indicate if the state 
in column “D” matches any rules (“1” means match and “0” 
means no match). The last field “F” records the state ID pointed 
by the failure transition derived from the state in field “D”.  

There are several properties about the TT worth being mentioned.  

(1) Although each state on the AC automaton may occur multiple 
times on the first column (due to multiple goto transitions derived 
from the state), it can only occur once on column “D” (because 
each state is pointed by one goto transition).  

(2) Each state on the AC automaton has only one failure transition.  

Because of the above two properties we are able to store the 
failure transition derived from each state (say d) at the same entry 
where the goto transition pointing to state d is stored.  

The matching rules are stored in Rule Table (RT). Every time we 
visit a state associated with rules, we use the state ID as the hash 
key to get the index of RT. To use memory efficiently, each entry 

of RT only stores one rule. If a state associates with multiple 
matching rules, we store all its associated rules in continuous 
entries starting at the location pointed by the hash index, and use 
one bit in each entry to indicate if the entry is the last rule 
associated with the state. For instance, state 5 in Figure 2 
associates with two rules (rule 2 and 6). So we store rule 2 and 6 
in two continuous entries, and use the ID of state 5 as the hash key 
to get the index of the first rule. Please note that one rule may 
have multiple instances in the rule table if it associates with 
multiple states. The details about how to construct table RT will 
be presented in the next section. 

Based on the architecture in Figure 5, the procedure that a 
character (say c) is processed is explained as follows. 

(1) Character c is used to index table CTT to get the internal 
encoding of c. This step is required only when 2D P2-Hashing is 
used in the construction of the perfect hash tables. 

(2) The concatenation of current state ID (stored in current state 
register) and the encoding of c is used as the hash key sent to the 
hash unit, which returns the index to table TT. The current state 
ID and character c are compared with the first two fields of the 
indexed entry.  

(2.1) if they are matched, we say a goto transition is found and 
we (a) update the current state register using field “D” of the 
indexed entry; (b) update the failure state register using field “F” 
of the indexed entry; (c) search table RT (using field “D” as the 
hash key) to find matched rules if field “M” is equal to 1.  

(2.2) if they are not matched, a failure is returned and we (a) 
update the current state register using the state ID stored in the 
failure state register; (b) go back to the beginning of step (2) and 
repeat the procedure.  

Based on the above procedure, it is easy to see that the major 
operations involved in the architecture are hash calculations and 
table accesses. Therefore, the architecture is suitable for both 
hardware and software implementations. 
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6. PERFECT HASH TABLE 
CONSTRUCTION ALGORITHM WITH 
RULE TABLE SUPPORT 
In Section 4, we discuss the perfect hash table construction for 
transition table. In this section, we consider a more complicated 
situation in which two perfect hash tables (TT and RT) are 
constructed simultaneously. 

Let’s first review hash keys used in the two hash tables. The hash 
key of TT is the concatenation of source state ID and input 
character, while the hash key of RT is only the source state ID. To 
generalize the perfect hash table construction problem, we 
suppose that each rule qR  corresponds to a virtual character rR . 
Values of these virtual characters are all NULL. With the 
introduction of virtual characters, hash keys of the two hash tables 
are unified to the same form, i.e., the concatenation of source state 
ID and character. 

We now modify the 2D P2-Hashing algorithm to support the 
constructions of the two perfect hash tables (TT and RT). 

(1) The purpose of step 1 of the 2D P2-Hashing algorithm is to 
convert the AC automaton V� � � �� �� �� �� ��  to a bipartite 
graph W � X� Y� Z�. With the consideration of two tables, we let 
X � � , and Y � ^ b �r-� s rt�, where �  is the number of rules. 
We let the edge set Z as the union of two subsets: Z- and Z.. Each 
edge in Z-  corresponds to a goto transition, i.e., Z- � �[ _� � ]
u&_ ( �� &� ( ^� 2:32��_� �� ) ����� . Each edge in Z. 
corresponds to a pair of state and matched rule, i.e., Z. � �[
_� rR ] � if state _ matches rule ���. 

Consider the AC automaton in Figure 2. Its bipartite graph model 
with the consideration of matching rules is given in Figure 6, 
where gray nodes correspond to virtual characters. 

 (2) Since r-� s rt are virtual characters, they cannot be renamed 
to help avoid hash collisions. The reason for representing them in 
the bipartite graph is to help determine the degrees of state nodes, 
which imply the difficulties of renaming the state nodes to achieve 
collision-free placements in both perfect hash tables. In the second 
step, the bipartite graph is decomposed to small edge sets. Since 
virtual characters cannot be renamed, they are treated as fixed 
nodes, and never participate in the procedure of decomposition. 
One possible decomposition result of the bipartite graph in Figure 
6 is given in TABLE III. 

 

1γ 2γ 3γ 4γ 5γ 6γ
 

Figure 6. The bipartite graph model of AC automaton in 
Figure 2 with the consideration of matching rules. (Nodes in 

the first and third rows are in node set v.) 
 

TABLE III.  Decomposition result of the bipartite graph in 
Figure 6 

Seq 1 2 3 4 5 6 7 8 9 10
Node 11 9 7 12 3 h r 2 i 1

<11,� 5> <9,� 1> <7,� 3> <12,� 4> <3,h> <0,h> <2,r> <2,� 2> <1,i> <1,e>

Seq 11 12 13 14 15 16 17 18 19
Node 4 e 10 8 5 0 s 6 m

<4,e> <10,e> <8,s> <5,� 2> <0,s> <6,s> <6,m>
<5,� 6> <0,m>

Dependent
edge set

Dependent
edge set

 
 

(3) Step 3 is similar to what described in Section 4, except that 
each dependent edge set here might have two different types of 
edges. During the placement of each dependent edge set, edges 
are placed into the corresponding hash tables according to their 
types. Any hash collision that occurs during the placement of a 
dependent edge set causes the renaming of the associated node, 
and the re-placements of all edges in the set. It’s worth noting that 
the definition of hash collision in the rule table is different from 
that in the transition table. Consider state node 5 in TABLE III. It 
is associated with two rules, R2 and R6. According to our system 
design, we use the ID of state node 5 as the hash key to get the 
hash index, and place the two rule instances in two continuous 
entries starting at the index. The placement is successful if both of 
the two entries are available; otherwise a hash collision occurs. 

7. PERFORMANCE EVALUATION 
In this section, we evaluate P2-Hashing and 2D P2-Hashing in 
terms of hash table construction time and memory cost. The 
evaluated algorithms are implemented in C++ and tested on an 
AMD Athlon 64 X2 5200+ 2.60-GHz computer with 3-GB 
memory. Three string rule sets are used in the evaluation. The first 
is extracted from the Snort rule set (June 2009), and includes 6.4K 
string rules; the second is extracted from the ClamAV rule set 
(June 2009), and includes 54K string rules; the third one is a 
subset of the first rule set including only 20 short rules with the 
same prefix. Given the three rule sets, we first prepare the 
automatons used in the evaluation. We convert each rule set into 
an AC automaton, and an AC-DFA. Due to the huge memory cost 
of AC-DFA, we eliminate its backward transitions to states at the 
first four levels according to the scheme in [19]. To maintain the 
functionality of the AC-DFA after the transition elimination, we 
adopt the scheme proposed in [19], i.e., cache two states in 
registers to keep track of the destination states pointed to by the 
eliminated transitions. TABLE IV shows the statistics of the three 
rule sets and their automatons. 

 

TABLE IV.  Three rule sets and their Automatons 

Snort ClamAV Small 
Set

Rule # 6.4K 54K 20
total character # 105K 6.49M 82

state # of AC automaton 77K 6.24M 24
(failure) transition # of AC automaton  77K 6.24M 23
trans. # of AC-DFA after trans. elim. 118K 7.62M /

# of bits in state ID 19 25 7
# of bits in Character ID (if applicable) 9 9 6
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Figure 7. Average number of hash trials required for each 

transition placement under Snort rule set 
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Figure 8. Average number of hash trials required for each 

transition placement under ClamAV rule set 

The name space of states is set four times as large as the state 
number, i.e., we use two more bits in state IDs than what we 
really need to uniquely represent the states. This allows us a 
certain amount of unused names to select from when hash 
collisions occur. The name space of characters is set twice as large 
as the character number. For both AC automaton and AC-DFA, 
the evaluated algorithms construct two hash tables (TT and RT). 
During the experiment, all hash tables are configured with the 
same load factor. 

7.1 Perfect Hash Table Construction Time 
The hash table construction time could be measured by the 
average number of hash table insertion trials (hash trials for short) 
required for every transition placement. Figure 7 and Figure 8 
show the average number of hash trials required for each 
transition placement when two automatons are built under 
different rule sets. Both P2-Hashing and 2D P2-Hashing can 
successfully construct the perfect hash tables with the given name 
space sizes, even when the load factor of the hash table is set as 
high as �+�D� � ? D?w.  
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Figure 9. Average number of hash trials for each transition 
placement under small rule set for building AC automaton 
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Figure 10. Perfect hash table construction time for different 

rule sets (load factors are set to 1/1.1 and 1/1.5) 

It’s easy to see that 2D P2-Hashing performs slightly better than 
P2-Hashing. The better performance is because when compared to 
P2-Hashing, 2D P2-Hashing can decompose transitions to much 
smaller transition sets. Taking the AC automaton of the Snort rule 
set as an example, the largest transition set in P2-Hashing that has 
to be placed into the hash table as a whole includes 178 transitions, 
while the largest transition set in 2D P2-Hashing includes only 14 
transitions (details are not shown due to space limitations). 
Therefore, 2D P2-Hashing can achieve higher success 
probabilities when placing transition sets into the hash table. In 
Figure 9, we compare P2-Hashing and 2D P2-Hashing under the 
small rule set. We can see that the performance gap between P2-
Hashing and 2D P2-Hashing has widened. 

From these figures, it is clear that the average number of hash 
trials drops quickly when the load factor of the hash table 
decreases. Figure 10 shows the actual running times of the 
evaluated algorithms to construct the perfect hash tables with 
different rule sets, automatons, and hash-table load factors.  Under 
the Snort rule set, when the load factor of the hash tables is 90.9%, 
the 2D P2-Hashing algorithm takes only 7 seconds to construct the 
perfect hash tables for AC automaton, and 3 seconds for AC-DFA. 
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Both construction times drop to only 2 seconds when the load 
factor of the hash tables is reduced to 66.6%. 

Due to the large size of the ClamAV rule set, 2D P2-Hashing 
requires about 120 seconds and 50 seconds to build the perfect 
hash tables for AC automaton and AC-DFA, respectively, when 
the load factor of hash tables is 90.9%. If the load factor reduces 
to 66.6%, 2D P2-Hashing requires only 50 seconds to build perfect 
hash tables for AC automaton, and 30 seconds for AC-DFA. The 
reason that the construction time of AC-DFA is shorter than that 
of the AC automaton is because the construction of AC-DFA 
doesn’t need to avoid hash collisions for failure transitions. 

7.2 Storage Requirement 
The perfect hash tables constructed by P2-Hashing and 2D P2-
Hashing are very compact. We compare the memory cost of our 
multi-string matching engine against the existing work in TABLE 
V and TABLE VI. In the evaluation, the load factors of hash 
tables are assumed to be 90.9%. It can be seen that under the snort 
rule set, our scheme is among the most compact implementations 
of AC automaton. Compared with CDFA and B-FSM, our 
solutions store all rules in a single AC automaton without rule-set 
partitioning, and therefore are suitable for both hardware and 
software implementations. Under the ClamAV rule set, the 
memory costs of our schemes are about 1.5~1.8 times that of 
CDFA, which is currently the best known scheme for the full 
ClamAV rule set. To achieve the very low memory cost, CDFA 
needs to partition the rule set into 32 subsets, and implements 
each of them with an individual AC automaton. The large number 
of parallel AC automatons makes CDFA unsuitable for software 
implementation and hardware off-chip memory implementation 
(due to the pin limitation of the chip). Furthermore, hardware on-
chip implementation is also infeasible, because CDFA requires 
26.8MB memory, which is far beyond the capacity of on-chip 
memory. 

 

 

TABLE V.  Memory usage comparison for Snort rule set 

AC Types Rules #
# of 

Partitions
Total 

Characters
Total 

Memory
mem/
char

(2D) P2-Hash  AC 6.4K 1 105K 699KB 7.6B

(2D) P2-Hash  AC-DFA 6.4K 1 105K 767KB 8.33B

CDFA [17] AC-DFA 1,785 2 29.0K
129KB~
256KB

4.45B~
8.2B

B-FSM [8] AC-DFA 1.5K 4 25.2K 188KB 7.4B
Bitmap 

Compression [9]
AC 1.5K 1 18.2K 2.8MB 154B

Path
Compression [9]

AC 1.5K 1 18.2K 1.1MB 60B

 

 

TABLE VI.  Memory usage comparison for ClamAV rule set 

AC Types Rule #
# of 

Partitions
Total

Characters
Total 

Memory
mem/
char

(2D) P2-Hash  AC 54K 1 6.49M 72.1MB 11.1B

(2D) P2-Hash  AC-DFA 54K 1 6.49M 61.8MB 9.53B
CDFA[17] AC-DFA 50K 32 4.44M 26.8MB 6.1B

 

8. DISCUSSION AND FUTURE WORK: 
INCREMENTAL UPDATE 
Since the insertion and deletion of a rule can be decomposed to 
multiple insertions or deletions of transitions, we only consider 
how to delete a transition from and insert a transition into the hash 
table. Deleting a transition from the hash table is trivial, and is 
similar to performing a hash table lookup. Inserting a transition, 
however, is not that natural, because hash collisions may occur 
during the insertion. According to the main principle of this paper, 
when hash collision occurs, we should rename the source state or 
the labeled character of the conflicting transition, and re-place all 
related transitions. Given the fact that each character usually 
associates with tens of thousands of transitions in large rule set, 
renaming characters is infeasible. So the only choice is to rename 
the source state of the conflicting transition until all of its 
associated transitions are placed into the hash table without 
collision. However, there are some states associated with a large 
number of transitions, say 100 transitions (we call these states 
large states, and call the numbers of associated transitions the 
sizes of the states). The probability of placing such a large number 
of transitions into an almost full hash table without any collision 
is low. 

Actually, instead of renaming the large state until all of its 
associated transitions are placed into collision-free locations, we 
can let its transitions kick out the transitions currently resident in 
the conflicted locations (similar to the scheme used in Cuckoo 
hashing [16]), if the states associated with these resident 
transitions are all relatively small. In cases, some states that are 
kicked out are still too large. They can continue to kick out 
smaller states, until the states to be renamed are small enough. 
Then we just need to rename these small states to achieve 
collision-free placements. This way a complicated problem is 
decomposed to many simpler problems. In fact, analysis on the 
AC automatons of Snort and ClamAV rule sets shows that more 
than 99% of states have only three or fewer transitions (as shown 
in Figure 1). Therefore, the above scheme seems feasible. In our 
future work, we will study and investigate the incremental update 
scheme.  

9. CONCLUSION 
This paper proposes a multi-dimensional perfect hash table 
construction algorithm named P2-Hashing, based on which the 
well-known AC automaton can be implemented by very compact 
perfect hash tables. P2-Hashing requires no memory access to 
generate the hash index and guarantees to return the hash result 
within the time of exact one memory access. The processing of 
each character therefore requires only one memory access in a 
pipelined architecture. This property is very important for NIDS 
to survive under the attack of malicious traffic. It should be also 
noted that the use of character translation table won’t change the 
above property, since the character translation table is not on the 
critical path of the AC automaton pipeline operation and works 
independently to the hash tables. 
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